

Compounds, Bonds, and

Nomenclature >

- » Composed of more than one type of atom chemically bonded.
- » A pure substance, meaning its properties are the same throughout the substance.
- » Separated chemically not physically
- » No overall charge; they are electrically neutral.
- » Total number of protons equals the total number of electrons.

- » "The atoms in compounds combine in simple whole number ratios."
- » "In chemical reactions, atoms are combined, separated, or rearranged."

John Dalton's Atomic Theory

- » Identifies which atoms and how many of these atoms will be found in each molecule.
- » The atomic symbols identify the atoms and a subscript will identify the number of that atom.

Molecular Formula>

» H_2O → Water

- » 2 hydrogen atoms and 1 oxygen atom.
- » Since there is only 1 oxygen atom a 1 will not be written.

Molecular Formula Example 1

» H_2SO_4 → Sulfuric acid

» 2 hydrogen atoms, 1 sulfur atom and 4 oxygen atoms.

Molecular Formula Example 2

- » An ion is an atom or group of atoms with an uneven number of protons and electrons.
- » This particle is charged.
- » Uneven number of protons and electrons.
- » lons with a positive charge are named cations and ions with a negative charge are named anions.

- » Sodium Chloride
- » The sodium atom gives its electron to the chlorine atom.
- » The atoms were neutrally charged, with equal protons and neutrons.
- » Sodium has one more proton than electrons and the chlorine has one more electron than protons.
- The charge of the sodium is +1, and the chlorine is -1; each is now called an ion. The symbols for these ions are Na⁺ and Cl⁻. The charge is indicated by a plus or minus and a number superscripted. The number 1 is not written, if there is a charge written 1 is assumed unless another number is written.

Ion Example>

» The charge of the sodium is +1

- » The charge of the chlorine is -1
- » Symbols for these ions are Na⁺ and Cl⁻.

Ion Example Cont >

- » Composed of many atoms the overall particle is charged.
- » An example: Phosphate Ion \rightarrow PO₄⁻³
- » This ion has 3 more total electrons than it does protons.
- » Total of 47 protons, which means there must be 50 electrons.

- » Composed of many atoms the overall particle is charged.
- » An example: Phosphate Ion \rightarrow PO₄⁻³
- » This ion has 3 more total electrons than it does protons.
- » Total of 47 protons, which means there must be 50 electrons.

Formula	Name	Formula	Name
NO ₃ ⁻	Nitrate	CIO ₄ -	perchlorate
NO ₂ -	Nitrite	CIO ₃ ⁻	chlorate
CrO ₄ ²⁻	Chromate	CIO ₂ -	chlorite
Cr ₂ O ₇ ²⁻	Dichromate	CIO	hypochlorite
CN⁻	Cyanide	10 ₄ -	periodate
SCN ⁻	Thiocyanate	10 ₃ -	iodate
MnO ₄ -	Permanganate	10 ₂ -	iodite
OH⁻	Hydroxide	10-	hypoiodite
0 ₂ ²⁻	Peroxide	BrO ₄ -	perbromate
NH ₂ ⁻	Amide	BrO ₃ -	bromate
SO4 ²⁻	Sulfate	BrO ₂ ⁻	bromite
SO ₃ ²⁻	Sulfite	BrO⁻	hypobromite
PO ₃ ³⁻	Phosphite	CO ₃ ²⁻	carbonate
PO ₄ ³⁻	Phosphate	HCO ₃ -	hydrogen carbonate
HPO4 ²⁻	hydrogen phosphate	HSO ₄ -	hydrogen sulfate
H ₂ PO ₄ ⁻	dihydrogen phosphate	HSO ₃ -	hydrogen sulfite
$C_2H_3O_2^{-1}$	Acetate	HS⁻	hydrogen sulfide
CH ₃ COO ⁻	Acetate	NH_4^+	ammonium

Common Polyatomic Ion

- » Occur between a cation and an anion.
- » The molecule is formed because of the electrostatic attractive forces of the positive and negative ions
- » The overall charge for the molecule is zero. Meaning the positive charge must cancel out the negative charge.
- » Ionic bonds form between metals and nonmetals.

Iomic Bonds)

» If the difference in electronegativity is greater than 1.9, the bond is considered ionic.

Electronegativity Values for the Elements

1 H 21		<1.0 2.0 - 2.4															
3 Li 1.0	4 Be 1.5	1.0 - 1.4 $2.5 - 2.91.5 - 1.9$ $3.0 - 4.0$									5 B 2.0	6 C 2.5	7 N 3.0	8 O 3.5	9 F 4.0		
11 Na 1.0	12 Mg 1.2										13 Al 1.5	14 Si 1.8	15 P 2.1	16 S 2.5	17 C1 3.0		
19 K 0.9	20 Ca 1.0	21 Sc 1.3	22 Ti 1.4	23 V 1.5	24 Cr 1.6	25 Mn 1.6	26 Fe 1.7	27 Co 1.7	28 Ni 1.8	29 Cu 1.8	30 Zn 1.6	31 Ga 1.7	32 Ge 1.9	33 As 2.1	34 Se 2.4	35 Br 2.8	
37 Rb 0.9	38 Sr 1.0	39 Y 1.2	40 Zr 1.3	41 Nb 1.5	42 Mo 1.6	43 Tc 1.7	44 Ru 1.8	45 Rh 1.8	46 Pd 1.8	47 Ag 1.6	48 Cd 1.6	49 In 1.6	50 Sn 1.8	51 Sb 1.9	52 Te 2.1	53 I 2.5	
55 Cs 0.8	56 Ba 1.0	57 La 1.1	72 Hf 1.3	73 Ta 1.4	74 W 1.5	75 Re 1.7	76 Os 1.9	77 Ir 1.9	78 Pt 1.8	79 Au 1.9	80 Hg 1.7	81 Tl 1.6	82 Pb 1.7	83 Bi 1.8	84 Po 1.9	85 At 2.1	
87 Fr 0.8	87 88 89 Fr Ra Ac 0.8 1.0 1.1																
							\bigcirc				30			\bigvee		כ ∖V/	

» Covalent bonds are formed between two nonmetals.

- » Every one of the halogens bonds to itself to form a diatomic atom.
- » The molecule F₂ is a classic example of a covalent bond.

Covalent Bonds>

» An oxidation number is the charge that an ion is carrying.

			<u> </u>	\frown	Л	\sim			\sim		_	\sim			Γ		_	L N
7	87 Fr	88 Ra	*89 Ac	104 Rf	105 Ha	106 Sg	107 Ns	108 Hs	109 Mt	110 Ds								
6	55 Cs	56 Ba	*57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	82 Bi	84 Po	85 At	86 Rn
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Кг
3	11 Na	12 Mg	3B	4B	5B	6B	78	8B	8B	8B	18	2B	13 Al	14 Si	15 P	16 S	17 CI	18 A r
2	3 Li	4 Be	3	4	5	6	7	8	9	10	11	12	5 B	6 C	7 N	8 0	9 F	10 Ne
1	1 H																	2 He
	1A	2A											ЗA	4A	5A	6A	7A	8A
000000	1	2											13	14	15	16	17	18

NaCl

- » Oxidation number of sodium ion is +1
- » Oxidation number of chlorine atom is -1.

MgCl₂

- » Magnesium has an oxidation number of +2
- » Chlorine's oxidation number is -1.

Electronegativity Examples

	Element(s)	Oxidation #	Exceptions
6	Group I	+1	None
7	Group II	+2	None
8	F	-1	None
9	H (with metals and B)	-1	None
10	H (with non-metals)	+1	None
11	0	-2	-1 in peroxides or with F
12	Halogens (group VII)	-1	with oxygen or halogens higher in column

Special Rules>

» $AICl_3$ is an ionic compound.

- > Al is a metal
- > Cl is a non-metal
- » Al⁺³: The Al atom will form a +3 ion
- » Cl⁻: The Cl will form a -1 ion.
- » The Al has a +3 charge we will need 3 Cl ions.
- » So, the oxidation number of Al is +3 and the oxidation number of Cl is -1.

Oxidation Examples >

- » The oxidation number for an element in its elemental form is 0. This holds true for isolated atoms and elemental substances that bond identical atoms: e.g. Cl_2 or S_8 .
- » The oxidation number of a monatomic ion is the same as its charge. For example, the oxidation number of Na⁺ is ⁺1, and that of S⁻² is ⁻2.
- » In binary compounds, a compound composed of two different elements, the element with greater electronegativity is assigned a negative oxidation number equal to its charge in simple ionic compounds of the element.

- » The sum of the oxidation numbers is zero for an electrically neutral compound. For example, water has no overall charge.
- » The sum of the oxidation numbers of a polyatomic ion equals the overall charge for the polyatomic ion. For example, the sum of phosphorous and oxygen in the polyatomic ion PO₄⁻³ must total ⁻3.

- » Alkali metals exhibit only an oxidation state of +1 in compounds.
- » Alkaline earth metals exhibit only an oxidation state of ⁺2 in compounds.
- » Fluorine always has a -1 oxidation number within compounds.
- » Oxygen always has an oxidation number of ⁻2, with 2 exceptions:
 - > 1) when it is in the form of peroxide where the oxidation number is $^{-1}$
 - > 2) it takes on whatever number it must when in a compound with fluorine, which is always ⁻1.

- » All halogens, besides fluorine, have a ⁻¹ oxidation number in compounds, except when with oxygen or other halogens where their oxidation numbers can be positive.
- » Hydrogen is always assigned a ⁺1 oxidation number in compounds, except when it is in a hydride form, where its charge is ⁻1.

- » The naming of compounds is referred to as nomenclature.
- » The nomenclature of all types of bonds are different.
- » Simple ionic compounds, those compounds consisting of only two elements, are referred to as binary compounds.

Nomenclature of Molecules

- » The nomenclature for molecular compounds is very easy if you know the meanings of the following Latin prefixes.
- » Add the suffix "ide" to the second element.

> >	1.mono 2.di	Formula	Name
>	3.tri	со	carbon monoxide
>	4.tetra		
>	5.penta	PCI	phosphorous pentachloride
>	6.hexa	,	
>	7.hepta	N ₂ O ₂	dinitrogen pentaoxide
>	8.octa		
>	9.nona	SE.	sulfur bexafluoride
>	10.deca	5 ₆	Sundi nexundonae

Nomenclature of Molecules