Double Replacement Reactions

The Basics!

- This type of reaction has a positive ion and a negative ion switching places
 - $A^+B^- + C^+D^- \rightarrow A^+D^- + C^+B^-$
- A Double Replacement Reaction will usually produce:
 - A gas
 - A precipitate
 - A molecular compound
 - (like water)
- If the Products are 2 aqueous solutions, no chemical rxn has occurred
 - Ex. $BaCl_2 + MgSO_4 \rightarrow BaSO_4 + MgCl_2$

Solubility Chart

Ions That Form Soluble Compounds	Exceptions
Group 1 ions (Li ⁺ , Na ⁺ , etc.)	
ammonium $(\mathrm{NH_4^+})$	
nitrate (NO_3^-)	
acetate ($\mathrm{C_2H_3O_2^-}$ or $\mathrm{CH_3COO^-}$)	
hydrogen carbonate (HCO ₃ ⁻)	
chlorate (ClO ₃ ⁻)	
halides (Cl ⁻ , Br ⁻ , I ⁻)	when combined with Ag+, Pb ²⁺ , or Hg ₂ ²⁺
sulfates (SO ₄ ² –)	when combined with Ag+,
	Ca^{2+} , Sr^{2+} , Ba^{2+} , or Pb^{2+}

Ions That Form Insoluble Compounds*	Exceptions
carbonate (CO ₃ ² –)	when combined with Group 1 ions or ammonium $(\operatorname{NH_4^+})$
chromate $(\operatorname{Cr} \operatorname{O}_4^{\ 2-})$	when combined with Group 1 ions, $\mathrm{Ca^{2+}}$, $\mathrm{Mg^{2+}}$, or ammonium $(\mathrm{NH_4^+})$
phosphate (PO ₄ ³ –)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
sulfide (S ² –)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
hydroxide (OH ⁻)	when combined with Group 1 ions, $\mathrm{Ca^{2+}}$, $\mathrm{Ba^{2+}}$, $\mathrm{Sr^{2+}}$, or ammonium $(\mathrm{NH_4^+})$

*compounds having very low solubility in ${
m H}_2{
m O}$

Predicting the Products of a Double Replacement Reaction

- 1. Given the reactants, write the name of the products by switching the **LAST** names
 - Do not use acid names; use FULL NAME
 ex: Don't use Nitrous Acid; use Hydrogen Nitrite
- 2. Check the Table of Solubility Rules
 - If something is insoluble

 it will form a precipitate (s) during the rxn

 RXN WILL OCCUR
 - If a liquid/gas has formed

RXN WILL OCCUR

If something is soluble → it will form an aqueous (aq) product
 (If you finish with 2 soluble (aq) reactants)

NO RXN (stop there)

The Exceptions!

- 5 things that may seem soluble, but will actually produce a liquid or a gas → a reaction WILL occur
 - If any of these are a product, there will be a rxn
- Hydrogen Carbonate \rightarrow breaks into water and Carbon Dioxide $H_2CO_{3 (aq)} \rightarrow H_2O_{(l)} + SO_{2 (g)}$

if you make Hydrogen Carbonate, the CO_2 bubbles (gas) produced = rxn

- Hydrogen Sulfite \rightarrow breaks into water and Sulfur Dioxide $H_2SO_{3 (aq)} \rightarrow H_2O_{(l)} + SO_{2 (g)}$
- Ammonium Nitrate \rightarrow breaks into water and Ammonia $NH_4OH_{(aq)} \rightarrow H_2O_{(l)} + NH_{3(q)}$

Exceptions (cont.)

- Hydrogen Sulfide H₂S
 - Odor produced (rotten eggs)
- Hydrogen Hydroxide HOH
 - Water $H_2O_{(l)}$ (which is a rxn)