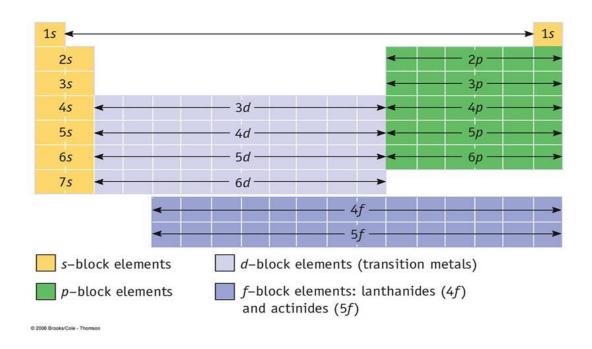
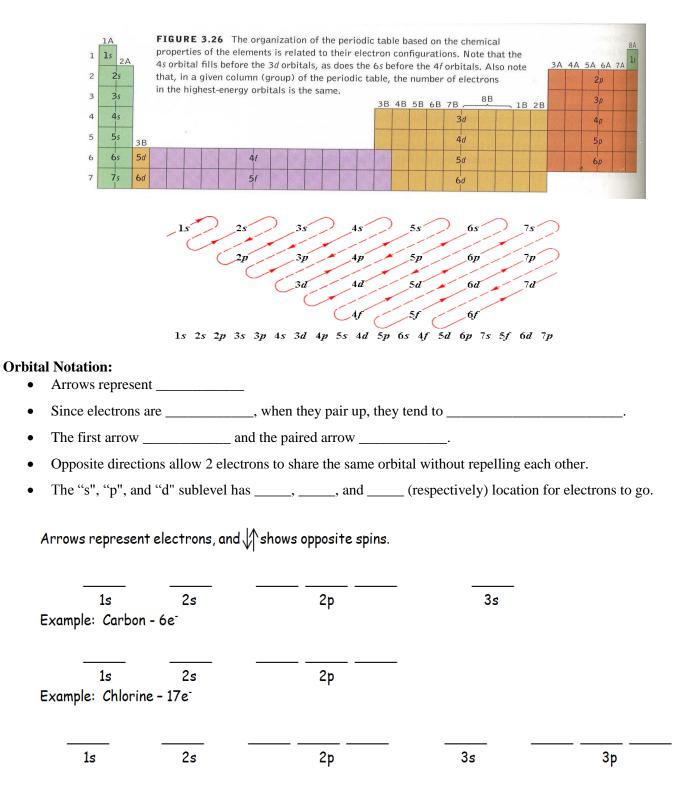
Aufbau principle:


Each shell is composed of one or more subshells, the

- First shell has one subshell: ____
- Second shell has two subshells: ____ and ____
- Third shell has _____, ____, and _____
- Fourth shell has _____, ____ and ____
- Fifth shell has _____, ____, and _____

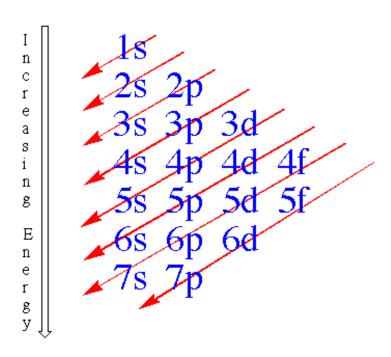

Subshell label	Max electrons	Shells containing	Historical name
S		Every shell	Sharp
p		2nd shell and higher	Principal
d		3rd shell and higher	D iffuse
f		4th shell and higher	Fundamental

Electrons per shell level:

Shell Level (n)	Subshell Name	Subshell Max Electrons	Shell Max Electrons (2n ²)
1			
2			
3			
4			

Hund's rule:

Noble Gas notation:

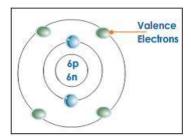

•	Abbreviates	major	portions	of e	lectron	configurat	10n

- Find the nearest ______ of lesser atomic number
- Write that noble gas in _____
- Write the remaining _____ that follows the noble gas used

Identify examples of the following principles: 1) Aufbau:

- 2) Hund's rule:
- 3) Pauli exclusion:

			Orbital Diagram	
Atom	Z	Configuration	1s 2s 2p	
Hydrogen	1	$1s^1$	10 0 000	
Helium	2	$1s^2$	10 0 000	
Lithium	3	$1s^22s^1$	10 0 000	
Beryllium	4	$1s^22s^2$		
Boron	5	$1s^22s^22p^1$		
Carbon	6	$1s^22s^22p^2$		
Nitrogen	7	$1s^22s^22p^3$		
Oxygen	8	$1s^22s^22p^4$		
Fluorine	9	$1s^22s^22p^5$		
Neon	10	$1s^22s^22p^6$		



The Importance of Valence (Outer Shell) Electrons

- The outermost shell of an atom is called its _____.
- It is the Valence shell that determines which elements will bond in

Valence Electrons

- Electrons of the _____
- Involved during chemical combinations
- Electrons are either:
 - o _____ from the outermost shell
 - o _____ into the outermost shell
 - o _____ with the electrons in the outermost shell of another element.

Elements having same number of valence electrons in	their atoms possesschemical properties.	
Elements in the same (column) have the	e same number ofin their outermost sh	ıell.
Thus, their chemical properties are similar.		
()	

Electronic configuration of Br

1s² 2s²2p⁶ 3s²3p⁶3d¹⁰ 4s²4p⁵

[Ar] 3d¹⁰4s²4p⁵

[Ar] = "noble gas core"

[Ar]3d¹⁰ = "pseudo noble gas core"

(electrons that tend not to react)

Atom's reactivity is determined by valence electrons

valence e's in Br: 4s24p5

highest n electrons

Ion and Anion

Ions are atoms or molecules which have or one or more valence electrons giving the ion a net positive or negative charge.

- Cations are ions with a net _____ charge.
- Anions are ions with a net _____ charge.

Because of arsenic's position on the periodic table, it can make four different ions: As+3, As-3, As+5 and As+1. Electron configurations for the first two ions of arsenic may be written using the basic rules we have already learned.

Here is the electron configuration again for neutral arsenic so you can easily compare it with the As+3 and As-3 ions.

$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}4p^3$$

33 electrons. (An equal number of protons and electrons.)

$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}$$

30 electrons. (A positive charge means that electrons have been LOST. Notice that the 3 electrons in 4p are missing.)

$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}4p^6$$

36 electrons. (A negative charge means that electrons have been GAINED. Notice that 4p has 3 EXTRA electrons, making a total of 6 and completely filling the 4p sublevel.)

Now, what if lithium were an ion, rather than an atom? (Remember, ions have unequal numbers of protons and electrons.)