Name:

Introduction to the Mole (Part I)

Purpose To discover a method of counting "things" that you are not able to see.				
	he dozen. Paper is p	eggs. You know that one dozen o ackaged by a ream. A ream of paper ha		
What determines how ma	ny items should mak	e up a particular unit?		
If you were asked to desig many items should be incl		t something, what would you consider unting unit?	when choosing how	
bag in the data tab Answer questions i 	of items in each bag le. n Analysis and Interp r group measured or	g. Measure the mass of each bag. Recor	d the mass of each	
Name of items in the bag	Mass of the bag	Mass of ALL items in the bag		
Skittles				
Gum drops				
Jelly beans				
ANALYSIS AND INTERP 1. As you know, a dozen re decided to make a new cor	presents 12 items. S unting unit. I called t	ince I did not have enough items to ma his unit an OWL. s contains items (candies).	ke a dozen, I	

We will call this number of items an OWL. If you understand the concept of OWL as a counting unit, just like a dozen for counting by 12, you should be able to complete the following questions.

Name: e. How many OWLS are 16 Hershey's Kisses? f. How many OWLS are 100 pretzels? g. How many OWLS are 400 desks? h. How many OWLS is 1 orange? (Write as a decimal.) i. How many OWLS are 2 skittles? (Write as a decimal.)
Write directions for finding the number of OWLS if given the number of pieces .
 How many OWLS are 48 Hershey's Kisses? How many OWLS are 2 Hershey's Kisses? How many OWLS are 32 Hershey's Kisses?
4. How many OWLS are 3 Hershey's Kisses?
5. How many OWLS are 24 gum drops?
6. How many OWLS are 2 gum drops?
7. How many OWLS are 20 skittles?

As you can imagine, an OWL of molecules of water would be too small to see. Scientists had to select a bigger unit for counting molecules of substances. The unit scientists use is called a **MOLE**.

One MOLE of anything has 602,200,000,000,000,000,000 items. This number is called AVOGADRO'S NUMBER and is usually written in scientific notation as 6.022×10^{23} One MOLE of anything has 6.022×10^{23} items.

Reminder:

When MULTIPLYING numbers in scientific notation, multiply the number part, times ten to the power of the sum of the exponents. For example: $(2 \times 10^4) \times (3 \times 10^5) = 6 \times 10^9$

When dividing numbers in scientific notation, divide the number part. The answer is multiplied by 10 to the power which is the difference between the exponents.

For example: $\frac{6x10^{45}}{3x10^{30}} = 2x10^{45-30} = 2x10^{15}$

Use the rules you have written for calculations involving **OWLS** to answer questions about **MOLES**. Remember to use 6.022×10^{23} for the number of items in a MOLE.

Name:

Mole Worksheet #1:

If you understood the Introduction to the Mole Activity, you will be able to complete the following questions.

Reminder: One MOLE has 6.022 * 10²³ items or there are 6.022 * 10²³ items/mole.

Items may mean: skittles, jelly beans, bananas, oranges, ATOMS, FORMULA UNITS, MOLECULES, IONS, etc.

Show your work!

1. How many atoms of potassium make up one MOLE ?
2. How many atoms of potassium make up 2 MOLES?
3. How many formula units of salt make up 10 MOLES?
4. How many molecules of water make up 1 MOLE?
5. How many molecules of water make up 5 MOLES?
6. How many moles are 6.022 x 10 ²³ atoms of sodium?
7. How many moles are 1.204 x 10 ²⁴ atoms of carbon?
8. How many moles are 1.806 x 10 ²⁴ atoms of sodium?
9. How many moles are 6.022 x 10 ²⁴ atoms of sodium?
10. How many moles are 6.022 x 10 ²³ molecules of water?
11. How many moles are 1.204 x 10 ²⁴ molecules of water?
12. How many moles are 3.010 x 10 ²⁴ molecules of water?
13. How many moles are 1.806 x 10 ²⁴ formula units of salt?
14. How many FORMULA UNITS are 6 MOLES of NaCl?

N	2	m	0.

Mole Worksheet #1:

If you understood the Introduction to the Mole Activity, you will be able to complete the following questions.

Reminder: One MOLE has 6.022 * 10²³ items or there are 6.022 * 10²³ items/mole.

Items may mean: skittles, jelly beans, bananas, oranges, ATOMS, FORMULA UNITS, MOLECULES, IONS, etc.

Show your work!

1. How many atoms of potassium make up one MOLE ?
2. How many atoms of potassium make up 2 MOLES?
3. How many formula units of salt make up 10 MOLES?
4. How many molecules of water make up 1 MOLE?
5. How many molecules of water make up 5 MOLES?
6. How many moles are 6.022 x 10 ²³ atoms of sodium?
7. How many moles are 1.204 x 10 ²⁴ atoms of carbon?
8. How many moles are 1.806 x 10 ²⁴ atoms of sodium?
9. How many moles are 6.022 x 10 ²⁴ atoms of sodium?
10. How many moles are 6.022 x 10 ²³ molecules of water?
11. How many moles are 1.204 x 10 ²⁴ molecules of water?
12. How many moles are 3.010 x 10 ²⁴ molecules of water?
13. How many moles are 1.806 x 10 ²⁴ formula units of salt?
14. How many FORMULA UNITS are 6 MOLES of NaCl?