and

CONSIDER THE FOLLOWING REACTIONS

- $\mathrm{BaCl}_{2}+\mathrm{MgSO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{MgCl}_{2}$
- $2 \mathrm{KI}+\mathrm{Pb}(\mathrm{NO} 3) 2 \rightarrow \mathrm{Pbl} 2+2 \mathrm{KNO} 3$
- $\mathrm{Fe}+\mathrm{H} 2 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Fe} 2 \mathrm{O} 3+\mathrm{H} 2$

All reactions have two reactants yielding the reaction.

WHAT IS A LIMITING REACTANT?

The reactant that limits the production of the reaction.

WHAT ABOUT THE OTHER REACTANT?

The excess reactant is the one that is not limited and has substance remaining after the reaction.

IF YOU START WITH MOLES OF A REACTANT.

1. Convert given mass to moles of the given.
2. Identify the mole ratio within the reaction of reactants to product.
3. Convert the moles of the given to moles of the product
4. Repeat this process for the other value of the given reactant.
5. Convert to the same product as before.
6. Value that converts into a lesser mole value for the product is the limiting reactant.

DETERMINING MOLE RATIO

For example:

$$
2 \mathrm{KI}+\mathrm{Pb}(\mathrm{NO} 3)_{2} \rightarrow \mathrm{PbI}_{2}+2 \mathrm{KNO}_{3}
$$

The mole ratios:

- 2 KI to $1 \mathrm{Pbl}_{2}$
- 2 KI to $2 \mathrm{KNO}_{3}$
- $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ to Pbl_{2}
- $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ to $2 \mathrm{KNO}_{3}$

LIMITING REACTANT - PRACTICE

The black oxide of iron, $\mathrm{Fe}_{3} \mathrm{O}_{4}$, occurs in nature as the mineral magnetite. This substance can also be made in the laboratory by the reaction between red-hot iron and steam.

$$
3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}
$$

When 36.0 g of $\mathrm{H}_{2} \mathrm{Oi}$ mixed with 67.0 g Fe , which is the limiting reactant?

SOLVE:

Step 1: Convert given mass to moles of the given. (Use molar mass of each compound)

- 36.0g of $\mathrm{H}_{2} \mathrm{O} *\left(\frac{1 \mathrm{~mol}}{18.02 \mathrm{~g}}\right)=2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
- $67.0 \mathrm{~g} \mathrm{Fe} *\left(\frac{1 \mathrm{~mol}}{55.85 \mathrm{~g}}\right)=1.2 \mathrm{~mol} \mathrm{Fe}$

Step 2: Identify the mole ratio within the reaction of reactants to product.

$$
4 \mathrm{Fe}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2}
$$

- $3 \mathrm{H}_{2} \mathrm{O}: 2 \mathrm{Fe}_{2} \mathrm{O}_{3} \quad(3: 2)$
- $4 \mathrm{Fe}: 2 \mathrm{Fe}_{2} \mathrm{O}_{3} \quad(4: 2=2: 1)$

SOLVE:

Step 3: Convert the moles of the given to moles of the product. (Use mole ratios)

- $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} *\left(\frac{2 \mathrm{~mol} \mathrm{Fe2O3}}{3 \mathrm{~mol} \mathrm{H} 2 \mathrm{O}}\right)=1.33 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$

Step 5 and 6: Repeat this process for the other value of the given reactant.

- $\quad 1.2 \mathrm{~mol} \mathrm{Fe} *\left(\frac{1 \mathrm{~mol} \mathrm{Fe} 2 \mathrm{O3}}{2 \mathrm{~mol} \mathrm{Fe}}\right)=0.6 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$

Step 6: Value that converts into a lesser mole value for the product is the limiting reactant.

- Fe is the limiting reactant producing $0.6 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$

DETERMINE MASS OF PRODUCT

A remaining reactant has material left after the reaction is completed.

To determine mass:

1. Determine moles of product produced by limiting reactant
2. Convert moles of product to mass of the product using molar mass.

LIMITING REACTANT - PRACTICE

Considering the reaction of the black iron oxide, $\mathrm{Fe}_{3} \mathrm{O}_{4}$,

$$
3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}
$$

What mass in grams of black iron oxide is produced?

LIMITING REACTANT - PRACTICE

Step 1: Determine moles of product produced by limiting reactant. (For this example, moles of product was found in last problem)

- $\quad 0.6 \mathrm{~mol} \mathrm{Fe} \mathrm{O}_{3}$

Step 2: Convert moles of product to mass of the product using molar mass.

- $0.6 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} *\left(\frac{111.7 \mathrm{~g}}{1 \mathrm{~mol}}\right)=67.02 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$

REMAINING MASS OF EXCESS REACTANT

A remaining reactant has material left after the reaction is completed.

To determine mass:

1. Determine moles of product produced by limiting reactant
2. Use moles ratio to determine the amount of moles for the excess reactant.
3. Use the molar mass of the excess reactant to convert moles to mass.
4. Find the difference between the given amount of reactant and the amount used in the reaction.

LIMITING REACTANT - PRACTICE

Considering the reaction of the black iron oxide, $\mathrm{Fe}_{3} \mathrm{O}_{4}$,

$$
3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}
$$

What mass in grams of excess reactant remains when the reaction is produced?

LIMITING REACTANT - PRACTICE

Step 1: Determine moles of product produced by limiting reactant.
(For this problem the moles of product was found in the first problem)

- $0.6 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$

Step 2: Use moles ratio to determine the amount of moles for the excess reactant.

- $0.6 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} *\left(\frac{3 \mathrm{~mol} \mathrm{H2O}}{2 \text { mol } \mathrm{Fe} 2 \mathrm{O} 3}\right)=0.9 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Step 3: Use the molar mass of the excess reactant to convert moles to mass.

- $0.9 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} *\left(\frac{18.02 \mathrm{~g}}{1 \mathrm{~mol}}\right)=16.22 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

Step 4: Find the difference between the given amount of reactant and the amount used in the reaction.

$$
\text { - } 36 g-16.22 g=19.78 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

PERCENTAGE YIELD

- In real life it is a common saying that "things did not go as planned"
- Reactions are the same.
- The chemical reactions that we write are considered theoretical (ideal) yield.
- Theoretical Yield: the maximum amount of product that can be produced from a given amount of reactant.
- In a lab, the material that is produced is considered the actual yield.
- Actual Yield: measured amount of a product obtained from a reaction.

PERCENTAGE YIELD

- Percentage yield is the percentage of the ratio between the actual yield to the theoretical yield.

actual yield x100
theoretical yield

PERCENTAGE YIELD - PRACTICE

Chlorobenzene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$, is used in the production of asprin, dyes, and disinfectants. One industrial method of preparing chlorobenzene is to react benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$ with chlorine.

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{HCl}
$$

When 36.8 g of $\mathrm{C}_{6} \mathrm{H}_{6}$ react with an excess of Cl_{2}, the actual yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ is 38.8 g .

What is the percentage yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$?

To solve this problem identify the mass produced by the limiting reactant $\mathrm{C}_{6} \mathrm{H}_{6}$ as done before)

