Notes

Double Replacement Reactions has a positive ion and a negative ion switching places

- Equation:
- A Double Replacement Reaction will usually produce:

Ions That Form Soluble Compounds	Exceptions	Ions I
Group 1 ions (Li ⁺ , Na ⁺ , etc.)		carbonate
ammonium ($\mathrm{NH_4^+})$		chromate
nitrate (NO $_3^-$)		
acetate ($C_2H_3O_2^-$ or CH_3COO^-)		phosphat
hydrogen carbonate (HCO ₃ ⁻)		sulfide (S
chlorate (ClO ₃ ⁻)		hydroxide
halides (Cl ⁻ , Br ⁻ , I ⁻)	when combined with Ag+, Pb ²⁺ , or Hg ₂ ²⁺	lly all o.max
sulfates (SO ₄ ² –)	when combined with Ag+,	*compound
	Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , or Pb ²⁺	

Ions That Form Insoluble Compounds*	Exceptions
carbonate (CO ₃ ² –)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
${\rm chromate}\;({\rm Cr}{\rm O_4}^{2\!-\!})$	$\begin{array}{l} \text{when combined with Group 1} \\ \text{ions, Ca$^{2+}$, Mg$^{2+}$, or} \\ \text{ammonium (NH$_4$^+)} \end{array}$
phosphate (PO ₄ ³ -)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
sulfide (S ² -)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
hydroxide (OH ⁻)	when combined with Group 1 ions, $\operatorname{Ca^{2+}}$, $\operatorname{Ba^{2+}}$, $\operatorname{Sr^{2+}}$, or ammonium $(\operatorname{NH_4}^+)$

Name:

eaici	ing the Products		
>	Given the	_, write the name of the products	by switching the names
	Do not use acid r	ames; use	(ex: Don't use Nitrous Acid; use Hydrogen Nitrite
>	Check the Table of Solub	ility Rules	
	• If something is _	→ It will form a _	(s) during the reaction.
		∴ The reaction	·
	• If a	/ has formed	
		∴ The reaction	.
	• If something is _	$ ightarrow$ it will form an _	product
	• If you fin	ish with 2 reactan	ts:

∴ The reaction ______.

ds having very low solubility in H₂O

The Exceptions!

5 things that may seem soluble, but will actually produce a liquid or a gas →					
If any of these are a much set, there will be a position.					
If any of these are a product, there will be a reaction:					
Hydrogen Carbonate → breaks into water and					
Hydrogen Sulfite → breaks into and					
Ammonium Nitrate → breaks into and and					
• Hydrogen Sulfide - H₂S					
Hydrogen Hydroxide –					