Unit 4 Study Guide, Hon

1. Define:
a. Chemical Equation
b. Catalyst
c. Endothermic
d. Exothermic
e. Molar Mass
f. Formula Mass
g. Percentage Composition
h. Empirical Formula
i. Word Equation
j. Activity Series
k. Mole Ratio
2. Limiting Reactant
m. Excess Reactant
n. Theoretical Yield
o. Actual Yield
p. Percentage Yield
3. Describe the five types of reactions learned in class.
4. Describe the steps to balance an equation, use a minimum of four steps.
5. What if the difference between coefficients and subsets?
6. Describe at least five different indications of a chemical reaction.
7. How does a chemist denote liquid, solid, gas, and aqueous.
8. In a chemical reaction, \qquad yields (\rightarrow) \qquad -
9. Convert 15.0 g of potassium dichromate, K 2 Cr 2 O 7 into moles. (The molar mass of K 2 Cr 2 O 7 is 294.2 g .)
10. Write the following word formula in equation form:
a. aluminum sulfate and calcium hydroxide produces aluminum hydroxide and calcium sulfate
b. iron and oxygen produces iron(II) oxide
c. calcium oxide and water produces calcium hydroxide
11. Write the following equation formulas in word form:
a. $\mathrm{Na} 2 \mathrm{CO} 3+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H} 2 \mathrm{O}+\mathrm{CO} 2$
b. $\mathrm{NH} 4 \mathrm{NO} 2 \rightarrow \mathrm{~N} 2+2 \mathrm{H} 2 \mathrm{O}$
c. $2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Cr}(\mathrm{s}) \rightarrow \mathrm{H} 2(\mathrm{~g})+\mathrm{CrCl} 2(\mathrm{aq})$
12. Balance the following equations
a.
$\mathrm{Na}+\ldots \ldots \mathrm{HCl} \rightarrow$ ___ $\mathrm{H} 2+$ \qquad NaCl
c. $\quad \mathrm{H}$
Fe2(SO4)3

$\mathrm{K} 2 \mathrm{SO} 4+$ \qquad $\mathrm{Fe}(\mathrm{OH}) 3$
H2SO4 + \qquad HI \rightarrow \qquad $\mathrm{H} 2 \mathrm{~S}+$ \qquad
\qquad H2O
13. Predict the following reactions, make sure they can exist. If not, state NR and support why.

a.	$\mathrm{PBr} 3 \rightarrow$	
b.	$\mathrm{HBr}+$	$\mathrm{Fe} \rightarrow$
c.	KMnO4	ZnCl2 \rightarrow
d.	$\mathrm{MnO} 2+$	$\ldots \mathrm{Sn}(\mathrm{OH}) 4 \rightarrow$
	$\mathrm{O} 2+$	$\mathrm{C} 5 \mathrm{H} 12 \mathrm{O} 2 \rightarrow$

13. Using the reaction $2 \mathrm{C} 3 \mathrm{H} 6+9 \mathrm{O} 2 \square 6 \mathrm{CO} 2+6 \mathrm{H} 2 \mathrm{O}$.
a. What is the mole ratio of Oxygen to Water?
b. What is the mole ratio of C 3 H 6 to H 20 ?
14. What is the molar mass of tetraethyl lead, $\mathrm{Pb}(\mathrm{C} 2 \mathrm{H} 5) 4$?
15. What is the molar mass of tetraethyl lead, CaCO ?
16. If the molar mass of CuCl 2 is $134.45 \mathrm{~g} / \mathrm{mol}$, what is the percentage composition of copper in the compound?
17. What is the percentage composition of chloride in CuCl 2 by mass?
18. Write the equation for the reaction of iron (III) phosphate with sodium sulfate to make iron (III) sulfate and sodium phosphate.
a. If you perform this reaction with 25 grams of iron (III) phosphate and an excess of sodium sulfate, how many grams of iron (III) sulfate can you make?
b. If 18.5 grams of iron (III) sulfate are actually made when you do this reaction, what is your percent yield?
c. If you do this reaction with 15 grams of sodium sulfate and get a 65.0% yield, how many grams of sodium phosphate will you make?
19. When lead (II) nitrate reacts with sodium iodide, sodium nitrate and lead (II) iodide are formed.
a. Balance the following equation:

$$
\mathrm{Pb}(\mathrm{NO} 3) 2(\mathrm{aq})+\quad \mathrm{NaI}(\mathrm{aq}) \square \quad \mathrm{PbI} 2(\mathrm{~s})+\quad \mathrm{NaNO} 3(\mathrm{aq})
$$

b. If I start with 25.0 grams of lead (II) nitrate and 15.0 grams of sodium iodide, how many grams of sodium nitrate can be formed?
c. What is the limiting reagent in the reaction described in problem 2?
d. How many grams of lead(II) iodide is formed?
e. How much of the nonlimiting reagent will be left over from the reaction in problem \#2?
f. If 6 grams of sodium nit are formed in the reaction described in problem \#2, what is the percent yield of this reaction?

