Using Chemical Formulas Notes

- Knowing a chemical formula we can identify the number of \qquad .
- The \qquad can be determined by adding the masses of each atom included.
- Remember the mass of an element's atom can be identified by looking at the periodic table, typically at the bottom of the box.

Define Formula Mass:

- Units:
- Referred to as the \qquad when referring to molecular compounds (covalent).
- Subscripts provide a \qquad between the number of \qquad for each element involved.

Practice Formula Mass

- $\mathrm{H}_{2} \mathrm{SO}_{4}$
- $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
- MgCl_{2}

Molar Mass

- Numerically equal to \qquad
- Units:
- Total molar mass identified per formula depends on the number of \qquad involved.

Moles (measurement)

- A mole is the \qquad of a substance.
- One mole =
- In chemistry, object are \qquad and \qquad .
- NaNO_{3}
- $\mathrm{Ba}(\mathrm{OH})_{2}$

Molar Mass used as a conversion factor.

- Units:
- The mass of a substance can be determined by:
- The number of moles of a substance can be determined by:

Percent Composition

- Percentage by mass of each element in a compound.
- An element's percentage is \qquad on the sample size of the compound (coefficient)

Percentage Practice

- Find the mass percentage of water in $\mathrm{ZnSO} 4 * 7 \mathrm{H} 20$.
- Find the percentage composition of the following:
- PbCl 2
- $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
- Magnesium hydroxide is 54.87% by oxygen by mass.
- How many grams of oxygen are in 175 g of the compound?
- How many moles of oxygen is this?

