Using Chemical Formulas

- In this section we will review:
 - o Formula Mass
 - o Molar Mass
 - Percentage Composition

Formula Mass

- Knowing a chemical formula we can identify the number of atoms involved.
- The mass of a molecule can be determined by adding the masses of each atom included.
- Remember the mass of an element's atom can be identified by looking at the periodic table, typically at the bottom of the box.

Formula Mass

- Sum of the average atomic masses of all atoms represented in its formula.
- Units: Atomic Mass Units (amu)
- Referred to as the molecular mass when referring to molecular compounds (covalent).
- Subscripts provide a ratio between the number of atoms for each element involved.

Practice Formula Mass

• H2SO4

• Ca(NO3)2

• MgCl2

Molar Mass

- Numerically equal to formula mass.
- Units: grams/mole
- Total molar mass identified per formula depending on the number of atoms (moles) involved.

Moles (measurement)

- A mole is the measurement of a substance
- One mole = 6.02×10^{23} objects
- In chemistry, object are atoms and molecules

How large is a mole?

- A mole of marshmallows would cover planet earth 12 miles high.
- A mole of seconds would last longer than it will take for the universe to burn out.
- A mole of hockey pucks would have equal mass to the moon.

Practice Molar Mass

- Al2S3
- NaNO3
- Ba(OH)2

Molar Mass used as a conversion factor.

- Molar mass uses units of grams per mole.
- The mass of a substance can be determined by taking the number of moles and multiplying it by the molar mass.

Amount of substance (mol)	Molar mass (g)	= Mass of substance (g)
	1 amount of substance (mol)	

 The number of moles of a substance can be determined by taking the mass of the material and dividing it by the molar mass.

Mass of substance (g)	1 amount of substance (mol)	= Amount of substance (mol)
	Molar mass (g)	

Percent Composition

• Percentage by mass of each element in a compound.

Mass of element in 1 mol of compound

Molar mass of compound

X100 = % element in the compound

• An element's percentage is not dependent on the sample size of the compound (coefficient)

Percent Composition

- Consistent for any amount of a compound.
- Identifying characteristic to the compound

Percentage Practice

- Find the mass percentage of water in ZnSO4*7H20.
- Find the percentage composition of the following:
 - o PbCl2
 - Ba(NO3)2
- Magnesium hydroxide is 54.87% by oxygen by mass.
 - How many grams of oxygen are in 175 g of the compound?
 - How many moles of oxygen is this?